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Abstract
We calculate the n-point correlation function for a large class of Brownian-
motion ensembles of random matrix theory. The corresponding Fokker–Planck
equation describes a determinantal process in the theory of matrix-valued
stochastic differential equations and can be mapped onto a Schödinger equation
of non-interacting electrons in one dimension. The correlation functions are
obtained explicitly via a suitable generalization of the method of biorthogonal
functions.

PACS numbers: 02.50.Ey, 05.40.−a, 73.23.−b

1. Introduction

Brownian-motion ensembles (BME) are natural generalizations of the standard ergodic
ensembles of random-matrix theory (RMT). The first formulation of a parametric random-
matrix ensemble in terms of a Hermitian matrix-valued diffusion process appeared in the
classical paper by Dyson [1]. More recently, much efforts [2–11] have been devoted to extend
Dyson’s Brownian-motion model to more general classes of stochastic processes, such as non-
Hermitian processes (with unitary or pseudo-unitary matrices) and non-standard symmetry
classes taken from Cartan’s table of Riemannian symmetric spaces [12–14] (Bogoliubov-de
Gennes and chiral). A central motivation for constructing a general classification scheme of
RMT using the theory of stochastic processes is the possibility of combining non-perturbative
tools from various different applications of RMT into a unified technique which may uncover
hidden algebraic structures and novel physical phenomena on a given specific problem.

There are two approaches to build such a classification. The first one is based on
stochastic differential equations and has been pursued vigorously by several authors [8–10]
with emphasis on Hermitian matrix-valued processes. In a recent paper [11] we introduced an
alternative approach based on the general algebraic structure of the Fokker–Planck equation.
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We have shown that for homogeneous processes with continuous sample paths a Fokker–
Planck equation with ‘time’-independent drift and diffusion coefficients can be used to model
the parametric evolution of the joint distribution of level positions (the eigenvalues of certain
random matrices). These ‘non-equilibrium’ ensembles of random-matrix theory are natural
extensions of Dyson’s Brownian-motion ensembles. Remarkably, their construction does not
depend on the existence of an underlying matrix model, which in turn implies the validity of a
classification scheme, alternative to Cartan’s table of symmetric spaces, that is entirely based
on algebraic properties of the Fokker–Planck operator. In this new scheme, Dyson’s index β

of standard RMT becomes a free parameter that can assume values different from the classical
ones 1, 2 and 4. Extensions of RMT ensembles to arbitrary values of β have been part of
current research topics in RMT and appeared in connection with Calogero–Sutherland models
with rational couplings [15], β-ensembles [16] and free probability theory [17].

The central quantity in BME is the n-point correlation function defined as

ρn(x1, . . . , xn; t) = N !

(N − n)!

∫ b

a

dxn+1 . . .

∫ b

a

dxNP (x1, . . . , xN ; t), (1)

which represents the probability density of finding n levels around each of the positions
x1, . . . , xn at ‘time’ t without observing the remaining ones. Knowledge of all n-point
correlation functions is fundamental for a complete statistical description of the physical
system of interest. For example, the average and variance of a linear statistics, i.e. a function
of the form F =∑N

i=1 f (xi), are given respectively by

〈F 〉 =
∫ b

a

dx f (x)ρ1(x; t), (2)

and

var(F ) =
∫ b

a

∫ b

a

dx dyf (x)f (y)C(x, y; t), (3)

in which we introduced the two-level function

C(x, y; t) = δ(x − y)ρ1(x; t) + ρ2(x, y; t) − ρ1(x; t)ρ1(y; t). (4)

Linear statistics play a central role in the theory of quantum transport, since they are related
to many physical observables, such as the cumulants of the full counting statistics of charge
transfer through the system [18].

For stationary ensembles the n-point correlation functions can be calculated explicitly by
various methods [19]. The most remarkable feature is the ubiquity of a factorized structure,
which allows the n-point function to be written as a conventional or quaternion determinant
whose entries depend on a certain two-point function called the kernel. Such factorization is
fundamental for the calculation of the statistical properties of physical observables and plays
a role similar to Wick’s theorem in many-body physics. For non-equilibrium ensembles these
n-point correlation functions are much harder to calculate. For instance, in [11] we showed that
the time evolution of the n-point correlation function (1), for a certain class of Brownian-motion
ensembles, is given by the following hierarchy of singular integro-differential equations

∂

∂t
ρn(x1, . . . , xn; t) =

n∑
p=1

{
∂

∂xp

(
s(xp)wNJβ

∂

∂xp

(wNJβ)−1

)
ρn(x1, . . . , xn; t)

−β
∂

∂xp

s(xp)P
∫

ρn+1(x1, . . . , xn, xn+1; t)

xp − xn+1
dxn+1

}
, (5)

where P denotes the principal value of the integral and Jβ,wN and s(x) will be defined
in section 2. Thus to obtain exact expressions for these correlation functions we must, in
principle, uncouple this hierarchy, which is a very non-trivial task indeed.
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Exact solutions for non-equilibrium RMT ensembles have been, however, obtained
for certain particular problems, such as the orthogonal-unitary and the symplectic-unitary
crossover in Gaussian and circular ensembles [21–23], and for DMPK equations in the
Wigner–Dyson unitary class [3], chiral unitary class [5] and in two types of BdG classes
[6]. Remarkably, some of these solutions are intimately related to certain types of Harish–
Chandra–Itzykson–Zuber (HCIZ) integrals [25], whose solutions are known only for connected
and compact groups. In some cases one can make a direct use of the HCIZ integral for the
unitary group to obtain explicit expressions for the n-point correlation function, as in the
problem of a random Hermitian matrix coupled to a external matrix source [26–28]. Recently,
Baker and Forrester [29] used Jack polynomials methods to derive explicit expressions for
the transition probability of the Fokker–Planck equation describing Brownian motion in
orthogonal polynomial ensembles (OPE), more specifically in the Hermite and Laguerre
ensembles, for all symmetry classes (generic β). Despite the great importance of this result,
the correlation function problem remains open, as it is not obvious how to obtain the n-point
function from these author’s representations.

In this work we employ the classification scheme introduced in [11] to unify the methods
for calculating the n-point correlation function of Brownian-motion ensembles describing
determinantal processes without directly uncoupling the hierarchy (5). Determinantal
processes can be mapped onto a non-interacting many-body quantum problem, which allows
the n-point function to be factorized as a determinant of a time-dependent kernel. Our approach
is a generalization of the method of biorthogonal functions used in [5]. We derive a very useful
integral representation for the kernel in terms of single particle Green’s functions. In particular,
for Hermite and Laguerre ensembles our results reproduce the formulae derived by Baker and
Forrester. We also adapt our generalized biorthogonal functions method to work in the context
of random transfer-matrix ensembles, which have been used in the description of electronic
transport in disordered wires. The paper is organized as follows. In section 2 we present the
Brownian-motion ensembles and describe the connection between the Fokker–Planck equation
and the Schrödinger equation of the associated Calogero-Sutherland problem. In section 3 we
restrict the problem to determinantal processes, for which the Schrödinger equation describes
non-interacting particles, and present an exact solution of the Fokker–Planck equation with
a symmetrized delta-function initial condition. In section 4 we introduce a generalization
of the method of biorthogonal functions to calculate the n-point correlation function in the
context of polynomial ensembles. Some examples are given in section 5, in which we
apply such new method to the Hermite, Laguerre and Jacobi ensembles with degenerate initial
conditions. We also show an interesting connection between the BME and the HCIZ integral in
section 6. In section 7, we work out transfer-matrix ensembles by calculating the n-point
correlation functions associated with certain DMPK equations. Finally, in the appendix we
make contact with the Barker and Forrester’s result.

2. Orthogonal polynomial Brownian motion ensembles

In [11] we studied orthogonal polynomial Brownian-motion ensembles, i.e., non-equilibrium
ensembles in which the levels {x} = (x1, x2, . . . , xN) perform a Brownian motion. The
evolution equation of the joint level distribution P({x}, t) was constructed from the general
theory of multivariate Markovian stochastic processes by imposing the following conditions:
(i) path continuity; (ii) homogeneity; (iii) equilibrium distribution given by classical random
matrix ensembles and (iv) a complete set of generalized multivariate classical polynomials
as eigenfunctions. With these conditions we concluded that P({x}, t) satisfies the following

3
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Fokker–Planck equation
∂P

∂t
= LFPP, (6)

where the Fokker–Planck operator is given by

LFP =
N∑

i=1

∂

∂xi

(
JβwNs(xi)

∂

∂xi

1

JβwN

)
, (7)

with

Jβ({x}) = |�N({x})|β, �N({x}) =
∏
i<j

(xi − xj ) and wN({x}) =
N∏

i=1

w(xi).

(8)

The above stochastic process is constructed to make contact with the orthogonal
polynomial ensembles by choosing w(x) to be the weight function of such polynomials,
pn(x), defined on the interval [a, b]. The auxiliary function s(x) must be a polynomial with
real roots of degree not greater than 2, i.e. s(x) = s0 + s1x + s2x

2. These functions are not
independent, but are chosen in such a way that their combination

1

w(x)

d

dx
(w(x)s(x)) = r(x) = r0 + r1x, (9)

is a polynomial of first degree1, and must satisfy the boundary condition

w(a)s(a) = 0 = w(b)s(b). (10)

Therefore, the stationary solution of the Fokker–Planck equation (6) and (7)

Pst ({x}) = CNJβ({x})wN({x}) (11)

reproduces the joint probability distribution of classical orthogonal polynomials ensembles,
obtained in RMT from of a maximum entropy principle [19], with Dyson’s index, β, classifying
the ensembles as orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4). The
normalization constant CN can be obtained from the associated Selberg integral.

The Fokker–Planck equation (6) can also be written in the conventional form

∂P

∂t
=

N∑
i=1

(
− ∂

∂xi

D
(1)
i +

∂2

∂x2
i

D
(2)
i

)
P, (12)

with drift and diffusion coefficients defined respectively by

D
(1)
i = r(xi) + β

∑
j (�=i)

s(xi)

xi − xj

and D
(2)
i = s(xi). (13)

We remark that the Brownian-motion ensembles depend solely on algebraic properties
of the functions w(x), s(x) and r(x), and do not require a specific matrix realization.
Furthermore, Dyson’s index β appears as a free parameter and can assume values different
from the classical ones {1, 2, 4}. The classification of the classical orthogonal polynomial
ensembles put forward in [11] is summarized in table 1.

An interesting subject to study is the evolution of an arbitrary function of the levels,
F = F(x1, . . . , xN), in a system whose dynamics is described by the Fokker–Planck
equation (6). The ensemble average of such function evolves in time according to the equation

〈F 〉 =
∫

dNxF({x})P ({x}, t). (14)

1 The coefficients r0, r1, s0, s1 and s2 are real numbers.
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Table 1. Classification of Brownian-motion ensembles based on properties of the functions w(x)

and s(x), and its boundary conditions. In this unified scheme each symmetry class is described by
its corresponding Fokker–Planck equation.

Interval w(x) s(x) r(x) Ensemble

(−∞, ∞) e−x2
1 −2x Hermite

[0, ∞) xνe−x (ν > −1) x 1 + ν − x Laguerre
[−1, 1] (1 − x)ν(1 + x)µ (ν, µ > −1) 1 − x2 µ − ν − (2 + µ + ν)x Jacobi

Taking the time derivative of 〈F 〉 we find the evolution equation

d〈F 〉
dt

= 〈L†
FPF

〉
, (15)

in which L†
FP is the adjoint Fokker–Planck operator. Such equation-of-motion method was

used in [11] to calculate ensemble average of transport observables, such as conductance and
shot-noise power, in quantum dots. This method can also be used to obtain the evolution
equation of the n-point correlation function. We start by noting that such function can be
written as an ensemble average of a composition of delta functions

ρ(x1, . . . , xn; t) =
∑
{l}

′
〈

n∏
i=1

δ
(
xi − yli

)〉
y

, (16)

in which we introduced the composed index {l} = l1, l2, . . . , ln with li = 1, . . . , N . The
prime indicates that the sum is over distinct indices and the subscript y to emphasize that the
average is taken over these variables. By combining (16) with (15) we obtain the hierarchic
equation (5). For a detailed deduction see [11]. In the following sections we will show
how to calculate the n-point correlation function for determinantal process without directly
uncoupling the hierarchy (5). We remark that since the results are exact they immediately
satisfy (5).

2.1. Connection to Calogero–Sutherland quantum systems

Let us turn back to the non-equilibrium situation described by (6). One of the methods to
solve Fokker–Planck equations is based on mapping the non-Hermitian operator LFP onto a
Hermitian operator H, which can be interpreted as a Hamiltonian of a quantum system [30].
This map is implemented by the Sutherland’s similarity transformation

P({x}, t) = wNJ
1/2
β e−E0t�({x}, t), (17)

which maps the Fokker–Planck equation (7) onto a Schrödinger equation in imaginary time

−∂�

∂t
= H�. (18)

Choosing the constant E0 to be

E0 = βN(N − 1)(s2β(N − 2) + 3r1)/12, (19)

we can show [11] that H is a many-particle Hamiltonian operator of Calogero–Sutherland
type

H = −
N∑

i=1

1

w(xi)

∂

∂xi

(
w(xi)s(xi)

∂

∂xi

)
+

β(β − 2)

4

∑
i �=j

s(xi)

(xi − xj )2
, (20)

5
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that describes N non-relativistic particles on a line interacting with a pairwise inverse-square
potential. Since the levels execute a non-colliding Brownian motion, the joint distribution
P({x}, t) vanishes at coincident points, thus allowing us to treat the particles in the associated
quantum problem as fermions. The antisymmetry of the wavefunction is guaranteed by the
following transformation

J
1/2
β → J

1/2
β sign�N({x}). (21)

This operator method is efficient if one can solve the associated Schrödinger eigenvalue
problem. This approach is particularly tractable in the unitary case, β = 2, which corresponds
to the non-interacting case. For general β the eigenfunctions of (20) are related to the
multivariate orthogonal polynomials [11, 29], which in turn are connected to Jack symmetric
polynomials. Such connection was explored by Baker and Forrester in [29] to construct a
useful representation for the solution of the Fokker–Planck equation (7) for general values of
β, which we shall discuss in appendix A.

2.2. Formal solution: probability transitions and green’s functions

The general solution of the Fokker–Planck equation (6) can be written as

P({x}, t) =
∫

dNx ′P({x}, t |{x ′}, 0)P ({x ′}, 0), (22)

where the transition probability satisfies the Fokker–Planck equation(
∂

∂t
− LFP

)
P({x}, t |{x ′}, 0) = 0 (23)

with a symmetrized δ-function initial condition

P({x}, 0|{x ′}, 0) = 1

N !

∑
P∈SN

N∏
j=1

δ(xj − x ′
P(j)), (24)

where the sum is over the permutation group SN . On the other hand, the general solution of
the Schrödinger equation (18) can be written as

�({x, t}) =
∫

dNx ′wN({x ′})G({x}, t |{x ′}, 0)�({x ′, 0}), (25)

where the N-fermion Green’s function G({x}, t |{x ′}, 0) is defined by(
∂

∂t
+ H

)
G({x}, t |{x ′}, 0) = 0, (26)

with the anti-symmetric initial condition

G({x}, 0|{x ′}, 0) = 1

N !wN({x})
∑
P∈SN

(−1)P
N∏

i=1

δ(xi − x ′
P(i))

= 1

N !wN({x}) det[δ(xi − x ′
j )]i,j=1,...,N

= 1

N !
det

[
δ(xi − x ′

j )

w(xi)

]
i,j=1,...,N

. (27)

By comparing (22) and (25) and using the transformation (17) we obtain the following simple
relation between the transition probability and Green’s function

P({x}, t |{x ′}, 0) = e−E0twN({x})
(

Jβ({x})
Jβ({x ′})

)1/2

sign

(
�N({x})
�N({x ′})

)
G({x}, t |{x ′}, 0). (28)

6
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The problem is thus completely solved if we can obtain the N-fermions Green’s function.
This can be done exactly in the particular case β = 2, as we demonstrate in section 3.
Other assignments to particle’s statistics have also been used in the literature. For example,
it is possible to treat Calogero–Sutherland models with rational couplings, β = p/q, by
interpreting it as a description of a gas of free anyons [32].

3. Correlation functions of determinantal processes

For systems with unitary symmetry (β = 2) the two-body interaction term in the Calogero–
Sutherland Hamiltonian (20) vanishes reducing the system to a free fermion gas and H to a
sum of single-particle Hamiltonians H =∑N

i=1 Hxi
, where

Hx = − 1

w(x)

d

dx

(
w(x)s(x)

d

dx

)
= −s(x)

d2

dx2
− r(x)

d

dx
. (29)

The one-particle Hamiltonian satisfies the eigenvalue equation

Hxϕn(x) = −εnϕn, (30)

with eigenenergies εn = s2n
2 + (r1 − s2)n. The normalized wavefunctions ϕn(x) form a

orthogonal and complete set, so that∫ b

a

dx w(x)ϕn(x)ϕm(x) = δn,m and
∞∑

n=0

ϕn(x)ϕn(y) = δ(x − y)

w(x)
. (31)

The single-particle Green’s function g(x, t |y, t ′) defined by the initial value problem(
∂

∂t
+ Hx

)
g(x, t |y, t ′) = 0; g(x, t |y, t) = δ(x − y)

w(x)
, (32)

has the following spectral representation

g(x, t |y, t ′) =
∞∑

n=0

ϕn(x)ϕn(y) eεn(t−t ′). (33)

Form (27) and (32), the N-particle Green’s function G({x}, t |{x ′}, 0) becomes a Slater
determinant of a matrix with entries given by the single-particle Green’s function g(xi, t |x ′

j , 0)

G({x}, t |{x ′}, 0) = 1

N !
det[g(xi, t |x ′

j , 0)]i,j=1,...,N . (34)

Thus we obtain a factorized representation for the transition probability

P({x}, t |{x ′}, 0) = e−E0t

N !

�N({x})
�N({x ′})wN({x}) det[g(xi, t |x ′

j , 0)]i,j (35)

where

E0 =
∞∑

n=0

εn = N(N − 1)

6
(2s2(N − 1) + 3r1). (36)

In the literature of stochastic differential equations the determinantal structure of Green’s
function is obtained by means of the Karlin–McGregor formula and the final structure (35),
resulting from the Sutherland’s map, is known as the h-transform. This term has origin
in the harmonic function h(x) which is identical to our Vandermond determinant �({x}).
We emphasize that, unlike the derivation using stochastic differential equation, (35) is not
restricted to Hermitian matrix-valued processes. It can also be applied for solving the DMPK
equation, which is a Fokker–Planck equation for a pseudo-unitay matrix-valued process, as
we shall see in section 7.

7
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4. A general method using biorthogonal functions

In this section we obtain an exact expression for the n-point correlation function (1) of
orthogonal polynomial Brownian-motion ensembles with the delta-function initial condition.
We avoid to face the BBGKY-like hierarchy (5) by using an extension of the biorthogonal
functions method. This method was introduced by Muttalib [33] and used by Frahm [3] to
obtain the correlation function of the DMPK equation, which is a Fokker–Planck equation
describing the evolution, with sample length, of the transmission eigenvalue distribution in a
quantum wire [20].

The main idea of the method is to try and write the transition probability (35) in a
determinantal form

P({x}, t |{x ′}, 0) = CN det[K(xi, xj ; t)]i,j=1,...,N , (37)

with a kernel K(x, y; t) satisfying the properties∫ b

a

dxK(x, x; t) = N, (38)

∫ b

a

dzK(x, z; t)K(z, y; t) = K(x, y; t). (39)

If such kernel exists then, according to a well known theorem of RMT [19], the normalization
constant reads CN = 1/N! and the n-point correlation function can be written as

ρn(x1, . . . , xn; t) = det[K(xi, xj ; t)]i,j=1,...,n. (40)

In the next subsection we construct the kernel by generalizing the method of biorthogonal
functions.

4.1. Kernel construction

Our starting point is the form (35) of the transition probability. Writing �N({x}) as a
Vandermonde determinant

�N({x}) = (−1)N(N−1)/2 det
(
x

j−1
i

)
i,j=1,...,N

, (41)

we can write

P({x}, t |{x ′}, 0) = wN({x})
N !

det[φj−1(xk, t)]j,k det[χj−1(xk, t)]j,k
det[φj−1(x

′
k, 0)]j,k

, (42)

where we defined the functions

φn(x, t) = xn e−εnt , n = 0, . . . , N − 1, (43)

χm(x, t) = g(x, t |x ′
m+1, 0), m = 0, . . . , N − 1. (44)

The factor e−E0t = ∏n e−εnt was incorporated in the matrix φi−1(xj , t). Moreover, using the
identity

φj−1(x
′
k, 0) =

∫ b

a

dx w(x)φj−1(x)χk−1(x, 0) (45)

we can write the transition probability as

P({x}, t |{x ′}, 0) = wN({x})
N !

det[φj−1(xk, t)]j,k det[χj−1(xk, t)]j,k

det[
∫ b

a
dx w(x)φj−1(x, 0)χk−1(x, 0)]j,k

. (46)

8
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We remark that this decomposition is not unique. We can perform elementary operations on
the rows of the matrices without changing the determinant. With this freedom we can choose
the new set of functions

φn(x, t) → ψn(x, t) =
∫ b

a

dy w(y)Ln+1(y)g(y, 0|x, t), (47)

n = 0, . . . , N − 1, where g(x, t |y, t ′) is the single particle Green’s function and Ln(x) is the
Lagrange interpolation polynomial defined by

Ln+1(x) =
N−1∏

l=0
l �=n

x − x ′
l+1

x ′
n+1 − x ′

l+1

, n = 0, . . . , N − 1. (48)

As shown in appendix A, the choice (47) ensures that the functions {ψn(x, t)} and {χm(x, t)}
form a biorthogonal set, i.e.∫ b

a

dx w(x)ψn(x, t)χm(x, t) = δn,m, (49)

therefore the denominator reduces to the determinant of the identity matrix det[δi,j ] = 1. In
this way we can write the transition probability in terms of the product of two determinants

P({x}, t |{x ′}, 0) = CN det[ψj−1(xk, t)w(xk)]j,k det[χj−1(xk, t)]k,j . (50)

Where the factor wN({x}) =∏n w(xn) was incorporated to the first matrix. As the product of
two determinants is equal to the determinant of the product of the corresponding matrix and
the determinant is invariant under matrix transposition, we can write the transition probability
in the form (37) with kernel given by

K(x, y; t) = w(x)

N−1∑
n=0

χn(x, t)ψn(y, t). (51)

The biorthogonality condition (49) ensures that this kernel satisfies conditions (38) and (39),
which allow us to write the n-point correlation function in the form (40).

Using the definitions of the functions χn(x, t) and ψn(y, t) we can write the kernel in
terms of the one-particle Green’s function, so that

K(x, y; t) = w(x)

∫ b

a

dξ w(ξ)g(ξ, 0|y, t)

N∑
n=1

Ln(ξ)g(x, t |x ′
n, 0), (52)

which, with the aid of Cauchy integral formula, can be written as

K(x, y; t) = w(x)

∫ b

a

dξ w(ξ)g(ξ, 0|y, t)

N∑
n=1

∮
dz

2π i

Ln(ξ)g(x, t |z, 0)

z − x ′
n

, (53)

where the z-integral encircles the points x ′
n in the complex plane. The dependence of the

kernel on the Lagrange interpolation polynomial makes explicit calculation rather daunting.
One of the features of our method is the elimination of this dependence using the identity

�(ξ, z) ≡
N∏

l=1

ξ − x ′
l

z − x ′
l

= 1 − (z − ξ)

N∑
n=1

Ln(ξ)

z − x ′
n

, (54)

which enables us to rewrite the kernel in terms of two coupled integrals involving the one-
particle Green’s function

K(x, y; t) = w(x)

∫ b

a

dξ w(ξ)

∮
dz

2π i

g(x, t |z, 0)g(ξ, 0|y, t)

z − ξ
(1 − �(ξ, z)). (55)

9
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This is our main result. In particular, for the degenerate initial condition, i.e., x ′
n = x0,∀n, we

can use the identity

�(ξ, z) =
(

ξ − x0

z − x0

)N

= 1 − (z − ξ)

N−1∑
l=0

(ξ − x0)
l

(z − x0)l+1
, (56)

to obtain a factorization of the integrals of (55) and write the kernel as

K(x, y; t) = w(x)

N−1∑
l=0

Il(x, t)Jl(y, t), (57)

where

Il(x, t) =
∮

dz

2π i

g(x, t |z, 0)

(z − x0)l+1
(58)

Jl(y, t) =
∫ b

a

dξ w(ξ)(ξ − x0)
lg(ξ, 0|y, t). (59)

4.2. Sum representation

If the explicit calculation of the integrals (58) and (59) is not possible, we can use Green’s
function spectral decomposition (33) directly on the definitions of ψn(x, t) and χn(x, t),
yielding

ψn(x, t) =
N−1∑
m=0

ϕm(x) e−εmt

∫ b

a

dξ w(ξ)Ln+1(ξ)ϕm(ξ), (60)

χn(x, t) =
∞∑

m=0

ϕm(x)ϕm(x ′
n+1) eεmt . (61)

The first sum became finite because the integral
∫ b

a
dξw(ξ)Ln+1(ξ)ϕm(ξ) is zero for m � N ,

since Ln+1(ξ) is a polynomial of degree N − 1. Substituting these expressions into the
kernel (51) we find

K(x, y; t) = w(x)

N−1∑
m=0

∞∑
l=0

ϕl(x)ϕm(y) e(εl−εm)t

N∑
n=1

∫ b

a

dξ w(ξ)ϕm(ξ)Ln(ξ)ϕ(x ′
n). (62)

Using the following property of the Lagrange interpolation polynomial

N∑
n=1

Ln(ξ)ϕl(x
′
n) =

⎧⎨
⎩

ϕl(ξ), l = 0, 1, . . . , N − 1,∮
dz

2π i

ϕl(z)

z − ξ
[1 − �(ξ, z)], l = N,N + 1, N + 2, . . .

(63)

and with the orthogonality conditions of the polynomials ϕn(x) we arrive at the final
representation of the kernel

K(x, y; t) = w(x)

(
N−1∑
l=0

ϕl(x)ϕl(y) +
N−1∑
m=0

∞∑
l=N

rlmϕl(x)ϕm(y) e(εl−εm)t

)
, (64)

where

rlm =
∫ b

a

dξ w(ξ)

∮
dz

2π i

ϕm(ξ)ϕl(z)

z − ξ
[1 − �(ξ, z)]. (65)

10
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In the particular case of degenerate initial conditions, the integrals factorize and we can write

rlm =
N−1∑
n=m

alnbmn, (66)

where

aln =
∮

dz

2π i

ϕl(z)

(z − x0)n+1
, (67)

bmn =
∫ b

a

dξ w(ξ)(ξ − x0)
nϕm(ξ). (68)

In the next section we give applications of the above formulae for Hermite, Laguerre and
Jacobi ensembles with degenerate initial conditions. We remark that previous applications
of the method of biorthogonal functions suffered from effects related to the non-uniqueness
of the decomposition (46) and led to rather inconvenient expressions for the kernel, which
involved explicitly the Lagrange interpolation polynomial. A systematic elimination of this
difficulty is the main advantage of our approach.

5. Classical ensembles with degenerate initial condition

5.1. Hermite ensemble

From table 1 we see that the Hermite ensemble corresponds to the choice a = −∞, b =
∞, s(x) = 1 and w(x) = e−x2

. The single-particle Hamiltonian is given by

Hx = − d2

dx2
+ 2x

d

dx
, (69)

whose eigenfunctions are normalized Hermite polynomials

ϕn(x) = 1√
2nn!

√
π

Hn(x) (70)

with eigenenergies εn = −2n. Thus, the single-particle Green’s function reads

g(x, t |y, t ′) = 1√
π

∞∑
n=0

1

2nn!
Hn(x)Hn(y) e−2n(t−t ′) (71)

= ex2

√
πα1(τ )

exp

[
− (x − α0(τ )y)2

α2
1(τ )

]
, (72)

where α0(t) = e−2t , α1(t) = √
1 − e−4t and τ = t − t ′. We have thus two options for

representing Green’s function. In the following we choose the representation (72). In this
case the kernel is given by (57) with coefficients given by the simple integrals:

Il(x, t) = ex2

√
πα1(t)

∮
dz

2π i

e−(x−α0(t)z)
2/α2

1 (t)

(z − x0)l+1
(73)

Jl(y, t) = 1√
πα1(−t)

∫ ∞

−∞
dξ(ξ − x0)

l e−(ξ−α0(−t)y)2/α2
1(−t). (74)

11
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The first integral is solved by performing the transformation z → x0 + α1(t)

α0(t)
z and by using the

following integral representation of the Hermite polynomial∮
dz

2π i

l!

zl+1
e−(z−x)2 = e−x2

Hl(x), (75)

yielding

Il(x, t) = ex2

l!
√

πα2
1(t)

(
α0(t)

α1(t)

)l

exp

(
− (x − α0(t)x0)

2

α2
1(t)

)
Hl

(
x − α0(t)x0

α1(t)

)
. (76)

The second integral is solved in a similar way. First, we apply the scale transformation
ξ → x0 + α1(−t)ξ , then we eliminate the negative argument in α0 and α1 using the identities

α0(−t) = 1/α0(t) (77)

α1(−t) = iα1(t)/α0(t), (78)

where i = √−1. Finally we use the integral representation∫ ∞

−∞

dξ√
π

(2iξ)l e−(ξ+ix)2 = Hl(x) (79)

to get the result

Jl(y, t) =
(

α1(t)

2α0(t)

)l

Hl

(
y − α0(t)x0

α1(t)

)
. (80)

Substituting (76) and (80) into (57) we obtain

K(x, y; t) = e−(x−α0(t)x0)
2/α2

1 (t)√
πα2

1(t)

N−1∑
l=0

1

2l l!
Hl

(
x − α0(t)x0

α1(t)

)
Hl

(
y − α0(t)x0

α1(t)

)
, (81)

which agrees with the result obtained from the Baker–Forrester’s representation (A.17). The
sum over the Hermite polynomials can be done by using the Christofell-Darboux formula [31]
and we finally obtain

K(x, y; t) = e−ξ 2

√
π2N(N − 1)!

HN(ξ)HN−1(η) − HN−1(ξ)HN(η)

x − y
, (82)

where ξ = (x − α0(t)x0)/α1(t) and η = (y − α0(t)x0)/α1(t).

5.2. Laguerre ensemble

From table 1 we have a = 0, b = ∞, s(x) = x and the weight function is w(x) = xν e−x ,
with ν > −1. The Hamiltonian reads

Hx = −x
d2

dx2
− (1 + ν − x)

d

dx
, (83)

whose wavefunctions are normalized Laguerre polynomials

ϕn(x) =
(

n!

�(n + ν + 1)

)1/2

Lν
n(x) (84)

with eigenenergies εn = −n. Thus the one-particle Green’s function reads

g(x, t |y, t ′) =
∞∑

n=0

n!

�(n + ν + 1)
Lν

n(x)Lν
n(y) e−n(t−t ′). (85)

12
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As in the Hermite case, this summation can be performed exactly yielding

g(x, t |y, t ′) = α1+ν(τ )

�(1 + ν)
exp [(1 − α(τ))(x + y)] 0F1

(
1 + ν;α(τ)(α(τ) − 1)xy

)
, (86)

where α(τ) = (1 − e−τ )−1 and τ = t − t ′. As in the Hermite case we choose to work with the
representation (86) instead of (85). In the particular case of the degenerate initial condition
with x0 = 0, the kernel is given by the summation (57) with coefficients given by

Il(x, t) = α1+ν(t)

�(1 + ν)
e(1−α(t))x

∮
dz

2π i

e(1−α(t))z
0F1(1 + ν;α(t)(α(t) − 1)xz)

zl+1

Jl(y, t) = α1+ν(−t)

�(1 + ν)
e(1−α(−t))y

∫ ∞

0
dξ ξν+l e−α(−t)ξ

0F1(1 + ν;α(−t)(α(−t) − 1)ξy).

To solve the first integral we perform the scale transformation z → z/(1 − α(t)). In what
follows we use the following integral representation of the Laguerre polynomial∮

dz

2π i

ez
0F1(1 + ν;−xz)

zl+1
= �(ν + 1)

�(l + ν + 1)
Lν

l (x), (87)

which yields

Il(x, t) = α1+ν(t)(1 − α(t))l

�(l + ν + 1)
e(1−α(t))xLν

l (α(t)x). (88)

The second integral is solved by implementing the scaling transformation ξ → ξ/α(−t)

followed by the substitution α(−t) = 1 − α(t) and by making use of the integral∫ ∞

0
dξ e−ξ ξ ν+l

0F1(1 + ν;−ξx) = l!�(ν + 1) e−xLν
l (x), (89)

yielding

Jl(y, t) = l!

(1 − α(t))l
Lν

l (α(t)y). (90)

Substituting (88) and (90) into (57) we obtain

K(x, y; t) = α(t)(α(t)x)ν e−α(t)x

N−1∑
l=0

l!

�(l + ν + 1)
Lν

l (α(t)x)Lν
l (α(t)y), (91)

which agree with (A.26), obtained from the Baker–Forester representation. The sum can be
done by using of the Christoffel–Darboux identity, yielding

K(x, y; t) = N !

�(N + ν)
(α(t)x)ν e−α(t)x

Lν
N−1(α(t)x

)
Lν

N(α(t)y) − Lν
N(α(t)x)Lν

N−1(α(t)y
)

x − y
.

(92)

5.3. Jacobi ensemble

From table 1 we see that the Jacobi ensemble corresponds to the choice a = −1, b = 1, s(x) =
1 − x2, w(x) = (1 − x)ν(1 + x)µ and r(x) = µ − ν − (2 + µ + ν)x. The single-particle
Hamiltonian is given by

Hx = (x2 − 1)
d2

dx2
+ (ν − µ + (ν + µ + 2)x)

d

dx
, (93)

whose eigenfunctions are normalized Jacobi polynomials

ϕn(x) = 1√
hn

P (ν,µ)
n (x), (94)

13
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where

hn = 2ν+µ+1�(n + ν + 1)�(n + µ + 1)

n!(2n + ν + µ + 1)�(n + ν + µ + 1)
, (95)

with eigenenergies εn = −n(n + ν + µ + 1). The one-particle Green’s function reads

g(x, t |y, t ′) =
∞∑

n=0

1

hn

P (ν,µ)
n (x)P (ν,µ)

n (y) eεn(t−t ′). (96)

Unlike Hermite and Laguerre cases, there is not a summation formula for Jacobi polynomials
and Green’s function (96) can not be written in a closed form. In this case, the kernel can be
written in the representation (64), which, for the degenerate initial condition, has the form

K(x, y; t) = (1 − x)ν(1 + x)µ

(
N−1∑
l=0

1

hn

P (ν,µ)
n (x)P (ν,µ)

n (y)

+
N−1∑
n=0

∞∑
m=N

N−1∑
l=n

anlbml

hnhm

P (ν,µ)
n (x)P (ν,µ)

m (y) e(εn−εm)t

)
. (97)

The coefficients, in the particular case of the degenerate initial condition with x0 = 1, are
given by

anl =
∮

dz

2π i

P
(ν,µ)
n (z)

(z − 1)l+1
= �(ν + µ + n + l + 1)�(ν + n + 1)

2l l!(n − l)!�(ν + µ + n + 1)�(ν + l + 1)
, (98)

and

bnl = (−1)l
∫ 1

−1
dξ(1 − ξ)ν+l(1 + ξ)µP (ν,µ)

n (ξ)

= (−1)n+l2µ+ν+l+1 l!�(ν + l + 1)�(µ + n + 1)

n!(l − n)!�(ν + µ + l + n + 2)
. (99)

Substituting (98) and (99) into (97) we get the final expression

K(x, y; t) = (1 − x)ν(1 + x)µ

(
N−1∑
n=0

1

hn

P (ν,µ)
n (x)P (ν,µ)

n (y)

+
N−1∑
n=0

∞∑
m=N

�(ν + n + 1)�(µ + m + 1)

hnhmm!�(ν + µ + n + 1)
DnmP (ν,µ)

n (x)P (ν,µ)
m (y)e(εn−εm)t

)
, (100)

where the coefficient Dnm is obtained by summing over l

Dnm = 2ν+µ+1
N−1∑
l=m

(−1)l+m�(ν + µ + n + l + 1)

(l − m)!(n − l)!�(ν + µ + m + l + 2)
, (101)

yielding

Dnm = 2ν+µ+1(−1)N+m+1(N − m)�(N + n + ν + µ + 1)

(n − N)!(N − m)!(n + m + ν + µ + 1)(n − m)�(N + m + ν + µ + 1)
. (102)

The particular case of Legendre ensemble (ν = 0 = µ) was studied in [3] with a more involved
method.
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6. Connection with the Harish–Chandra–Itzykson–Zuber integral

There is an important connection between the determinantal processes discussed in the previous
section and the famous Harish–Chandra–Itzykson–Zuber integral which we now discuss.
Since it was introduced in the context of random matrix theory, the Itzykson-Zuber group
integral, later recognized as a particular case of the result of Harish–Chandra, had been used in
several areas of physics and mathematics (see [25] and references therein). The HCIZ integral
appears naturally in random matrix theory as the transition probability of the Brownian-motion
ensembles. As a concrete example, we cite the famous model introduced by Dyson [1] of
an Hermitian matrix-valued Ornstein–Uhlenbeck process, which corresponds to the Hermite
ensembles in our classification. This process is described by the following Fokker–Planck
equation in the flat space of Hermitian matrices

∂W

∂τ
=
∑

i

(
− ∂

∂Hµ

D(1)
µ +

∂2

∂H 2
µ

D(2)
µ

)
W, (103)

where µ is a label for independent matrix elements, and the drift and diffusion coefficients
given by D(1)

µ = −2Hµ and D(2)
µ = 1

2 (1+δij ). If the initial distribution is W(H, 0) = W0(H0),
the distribution in time τ is given by

W(H, τ) =
∫

dH0W(H, τ |H0)W0(H0), (104)

where the volume element dH0 is the product of the differentials of the independent matrix
elements of H0. The transition probability satisfies the same Fokker–Planck equation, but
with the delta initial condition: W(H, τ = 0|H0) = δ(H − H0). The transition amplitude of
this Ornstein–Uhlenbeck process is known [30] to be

W(H, τ |H0) = CN,τ exp

(
−Tr(H − α0(τ )H0)

2

α2
1(τ )

)
, CN,τ = 2N(N−1)/2[

πα2
1(τ )

]N2/2
, (105)

where the α0(τ ) = e−2τ and α1(τ ) = √
1 − e−4τ were previously introduced in section 5.1.

Note that, in the limit τ → ∞, the transition amplitude does not depend on H0, and provided
that W0(H0) is normalized, the distribution W(H, τ) relaxes to its equilibrium value, which
is a member from the Gaussian unitary ensemble (GUE). Exploring this property, we can
study the crossover between different symmetry classes by choosing appropriately the initial
distribution W0(H0), for example we can choose H0 to be a member from the Gaussian
orthogonal ensemble (GOE). Using this idea the crossover GOE → GUE was thoroughly
studied by Mehta and Pandey [21].

To describe the dynamics of the eigenvalues of H we proceed by decomposing the matrices
H = UXU † and H0 = U0X0U

†
0 , where X = diag(x1, . . . , xN) and U is an orthogonal, unitary

or symplectic matrix for β = 1, 2 or 4, respectively. The differential probability satisfies the
following equation [19]

W(Hτ)dH = CN,β |�N(X)|βW(UXU †τ) dX dU, (106)

where dU is the normalized Haar’s measure
(∫

dU = 1
)

of the appropriate group, CN,β is a
normalization constant fixed by the resulting Selberg’s integral and �N(X) is the Vandermond
determinant defined in (8). The reduced eigenvalue distribution is obtained by integrating over
the angular part

P(X, τ) = CN,2|�N(X)|2
∫

dU W(UXU †, τ ). (107)
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If the initial condition does not depend on the eigenvectors, W0(H0 = U0X0U
†
0) = W0(X0),

we can write the eigenvalue distribution as

P(X, τ) = CN,2CN,β |�N(X)|2

×
∫

dU

∫
dX0|�N(X0)|βW0(X0)

∫
dU0W

(
UXU †, τ

∣∣U0X0U
†
0

)
. (108)

The angular dependence of the transition function can be worked out as follows. From the
cyclic property of the trace in (104) we can write

W
(
UXU †, τ

∣∣U0X0U
†
0

) = W
(
U

†
0UXU †U0, τ

∣∣X0
)
, (109)

and, since the measure remains invariant under the change of variables U → U0U , the group
integral reduces to

�(X, τ |X0) =
∫

dUW(UXU †, τ |X0) (110)

= CN,τ exp

(
−Tr X2 + α2

0(τ ) Tr X2
0

α2
1(τ )

)
Iτ (X|X0), (111)

reducing the problem to the Itzykson–Zuber integral over the unitary group

Iτ (X|X0) =
∫

dU exp

(
2α0(τ )

α2
1(τ )

Tr(UXU †X0)

)
. (112)

To sum up, the stochastic subprocess on the radial coordinates is described by

P(X, τ) =
∫

dX0P(X, τ |X0)P0(X0), (113)

where we defined the initial condition as

P0(X0) = CN,β |�N(X0)|βW0(X0) (114)

and the transition function is given by

P(X, τ |X0) = CN,2CN,τ |�N(X)|2 exp

(
−Tr X2 + α2

0(τ ) Tr X2
0

α2
1(τ )

)
Iτ (X|X0), (115)

thus establishing the connection between the Brownian-motion ensembles studied in this
paper and the HCIZ integrals, whose solution depends on the solution of the corresponding
Fokker–Planck equation.

The Fokker–Planck equation for the eigenvalues can be obtained by changing the Cartesian
variables H in the Fokker–Planck equation (103) to their polar representation H = UXU †,
which require the construction of the corresponding Laplace–Beltrami operator. Alternatively
we may construct the matrix-valued stochastic subprocess associated with the eigenvalues of
H. Either way, we end up with a Fokker–Planck equation with drift and diffusion coefficients
given respectively by

D
(1)
i = −2xi + 2

∑
j (�=i)

1

xi − xj

and D
(2)
i = 1. (116)

As expected, these coefficients are exactly those of (13) evaluated at β = 2 (unitary symmetry)
and s(x) = 1 and r(x) = −2x (Hermite ensemble). In section 3, we showed that, in this case,
the transition probability can be represented as

P({x}, τ |{x0}) = e−E0τ

N !

�N({x})
�N({x0})wN({x}) det[g(xi, t |x0,j , 0)]i,j=1,...,N , (117)
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where E0 = −N(N − 1) and wN({x}) = ∏
i e−x2

i = e− Tr X2
. Inserting the single-particle

Green’s function (see representation (72))

g(x, t |y, 0) = ex2√
πα2

1(t)

exp

(
− (x − α0(τ )y)2

α2
1(τ )

)
(118)

in (117) and after some rearrangements we obtain

P(X, t |X0) = eN(N−1)τ

N !

�N(X)

�N(X0)
e−(Tr X2+α2

0 (τ ) Tr X2
0)/α

2
1 (τ ) det[eλτ xix0,j ]i,j=1,...,N , (119)

where we defined λτ = 2α0(τ )/α2
1(τ ). Comparing (119) and (115) we recover the Itzykson–

Zuber result

Iτ (X,X0) =
∫

dU exp[λτ Tr(UXU †X0)] =
∏N−1

n=1 n!

λ
N(N−1)/2
τ

det[eλτ xix0,j ]

�N(X)�N(X0)
. (120)

The crossover problems whose solutions are known, GOE → GUE [21], GSE → GUE
[22], and the corresponding problems in circular ensembles [23], are all examples of free
fermion dynamics. Their solutions are equivalent to solving the HCIZ integral in the unitary
group (β = 2). The other cases corresponding to HCIZ integrals over orthogonal and
symplectic groups correspond to the dynamics of interacting fermions and are still open. A
deduction of the HCIZ formula is also available in the literature of stochastic differential
equations [24]. For a recent discussion using the color-flavor transformation see [34].

7. Transfer matrix ensembles

In [11] we showed how to extend the methods developed in the context of polynomial
ensembles to random transfer ensembles, unifying the calculational methods and providing
a classification scheme alternative to Cartan’s table of symmetric spaces. In this section
we continue this procedure by adapting the generalized method of biorthogonal functions
to obtain the n-point correlation functions for non-polynomial ensembles described by the
DMPK equation, which is a Fokker–Planck equation describing the Brownian motion of
the transmission eigenvalues (eigenvalues of T †T , where T is the transmission matrix) of a
quantum wire, as its length is increased, see [20] for a review.

In a previous section we applied our method to solve crossover problems from a
symmetrized delta distribution to the joint distribution of the classical orthogonal polynomial
ensembles. Despite its mathematical interest, these problems do not have a direct physical
application. However, a crossover with a degenerate, delta-like initial condition is the one
naturally occurring in the DMPK equation. Although there is no equilibrium solution, we show
in [11] that the transfer matrix ensembles can be treated on the same footing as polynomial
ones if we introduce some special coordinates. In such coordinates, DMPK equations of all
symmetry classes can be written in the standard form

∂P

∂t
=

N∑
i=1

∂

∂xi

(
JβwNs(xi)

∂

∂xi

P

wNJβ

)
, (121)

where, as in section 2, each symmetry class is characterized by the functions w(x), s(x) and
r(x). Table 2 shows the classification of the DMPK symmetry classes.

In this case, the function w(x) is not related to the weight function of classical orthogonal
polynomials and condition (10) is not fulfilled, which allow non-polynomial solutions. The
‘levels’ 1 � xi � ∞ are related to the transmission eigenvalues, 0 � τi � 1, by τi = 2/(1+xi),
and N denotes the number of scattering channels.
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Table 2. Classification of Brownian-motion ensembles associated with the DMPK equations.

Interval w(x) s(x) r(x) Ensemble

[1, ∞) 1 x2 − 1 2x Wigner–Dyson
[1, ∞) x[(1−N)β−2]/2 x2 [1 − β(N − 1)/2]x Chiral
[1, ∞) (x2 − 1)(α−1)/2 x2 − 1 (1 + α)x Bdg

The DMPK equation with the ballistic initial condition was first solved, for the unitary
ensemble of the Wigner–Dyson class, in [4]. The equivalent solution in Chiral and BdG
classes can be found in [5] and [6], respectively. By ballistic initial condition we mean that all
transmission eigenvalues equal to unit, which in our coordinates is equivalent to solving (121)
with the initial condition

P({x}, 0) =
N∏

i=1

δ(xi − 1). (122)

The method of biorthogonal functions, developed in section 4 for polynomial ensembles
with unitary symmetry (β = 2), can be adapted to find the n-point correlation functions for
DMPK problems. In this paper we address the problem for a generic interpolation class
defined by

w(x) = (x2 − 1)(α−1)/2, s(x) = x2 − 1 and r(x) = (1 + α)x. (123)

According to table 1 of [11], the case β = 2 corresponds to the BdG classes C and D,
associated with systems with time reversal (TR) invariance and identified by the parameter
α = 0 or α = 2 according to the absence or presence of spin-rotation (SR) invariance,
respectively. The case α = 1 is also of interest since it implies w(x) = 1, which according to
table 2 corresponds to the Wigner–Dyson (WD) class. Physically, the WD class with β = 2
describes systems with broken TR symmetry. In the next subsection we calculate an explicit
formula for the n-point correlation which is valid for arbitrary values of N and α > −1. This
expression was presented without derivation in [35].

7.1. The n-point correlation function

When written in normal coordinates the DMPK equation has the same mathematical structure
as the Fokker–Planck equation defined for polynomial ensembles. As a result we may follow
the same steps taken in section 3, which yields the following determinantal structure for the
transition probability

P({x}, t |{x ′}, 0) = e−E0t

N !

�({x})
�({x ′})wN({x}) det[g(xi, t |x ′

j , 0)]i,j=1,...,N , (124)

where

E0 = N(N − 1)

6
(2N + 3α − 1) =

N−1∑
n=0

εn, (125)

with εn = n(n + α). To determine the one-particle Green’s function that appear in the
determinant we need to study the following Hamiltonian

Hx = −s(x)
d2

dx2
− r(x)

d2

dx2
= (1 − x2)

d2

dx2
− (1 + α)x

d

dx
. (126)
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Non-normalizable wavefunctions are characteristic of DMPK problems. In this case the one-
particle Hamiltonian satisfies the eigenvalue equation Hxϕk(x) = εkϕk(x), with continuum
spectra

εk = k2 + α2/4, k � 0. (127)

The eigenfunctions are given in terms of the hypergeometric function

ϕk(x) = AkF (α)
k (x); F (α)

k (x) = 2F1

(
α

2
+ ik,

α

2
− ik; 1 + α

2
; 1 − x

2

)
. (128)

The constant Ak can be determined by the same method used in [36], yielding

Ak = 2(1−α)/2|�(α/2 + ik)|
�(α/2 + 1/2)|�(ik)| . (129)

Therefore, the one-particle wavefunction satisfies the orthogonality and completeness relations∫ ∞

1
dx w(x)ϕk(x)ϕk′(x) = δ(k − k′), (130)

∫ ∞

0
dk ϕk(x)ϕk(x

′) = δ(x − x ′). (131)

The one-particle Green’s function has thus the following spectral decomposition

g(x, t |y, t ′) =
∫ ∞

0
dk e−εk(t−t ′)ϕk(x)ϕk(y). (132)

The continuum spectra make the approach to the DMPK equation somewhat different from
that used in the polynomial ensemble. Furthermore, the same single-particle Hamiltonian
satisfies another eigenvalue equation: Hxφn = −εnφn, with a discrete spectrum

εn = n(n + α), n = 0, 1, 2, . . . , (133)

whose eigenfunctions are normalized Jacobi polynomials

φn(x) = 1√
hn

P (ν,ν)
n (x), hn = 22ν+1

(
�(n + ν + 1)

)2
n!(2n + 2ν + 1)�(n + 2ν + 1)

, (134)

with parameter ν = (α − 1)/2. Rewriting the Slater determinant in terms of these polynomial
eigenfunctions we find

�({x}) ∝ det[φi−1(xj )]i,j=1,...,N , (135)

therefore we can write (124) as

P({x}, t |{x ′}, t) = wN({x})
N !

det[φi−1(xj , t)] det[χj−1(xk, t)]

det[φi−1(x
′
j , 0)]

, (136)

in which we have introduced the functions

φn(x, t) = e−εntφn(x), n = 0, 1, . . . , N − 1 (137)

χm(x, t) = g(x, t |x ′
m+1, 0), m = 0, 1, . . . , N − 1, (138)

which satisfy the following initial value problems(
∂

∂t
− H

)
φn(x, t) = 0, φn(x, 0) = φn(x) (139)
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∂

∂t
+ H

)
χm(x, t) = 0, χm(x, 0) = δ(x − x ′

m+1)

w(x)
. (140)

Following Frahm we define the overlap integral of the functions φn(x, t) and χm(x, t) by

Anm(t) =
∫ ∞

1
dx w(x)φn(x, t)χm(x, t). (141)

It is convenient to introduce the two-time auxiliary function

Ãnm(t, t ′) =
∫ ∞

1
dx w(x)φn(x, t)χm(x, t ′). (142)

Note that Anm(t) = Ãnm(t, t). Using equations (140) and (139) we find the following relation
between the time derivatives of Ã

∂

∂t
Ãnm(t, t ′) =

∫ ∞

1
dx w(x)χm(x, t ′)Hφn(x, t)

=
∫ ∞

1
dx w(x)φn(x, t)Hχm(x, t ′) = − ∂

∂t ′
Ãnm(t, t ′),

which allows us to conclude that Ã depends only on the time difference, i.e, Ãnm(t, t ′) =
Ãnm(t − t ′). In particular, for equal times, the overlap function (141) does not depend on time
and the integral can be evaluated for t = 0, yielding

Anm(t) = Anm(0) = φn(x
′
m+1). (143)

Therefore the functions {φn} and {χn} clearly do not form a biorthogonal set. In his pioneering
paper Frahm adapted the method introduced by Muttalib to construct such a set. Here we
proceed as in section 4. We make appropriate linear combination of the matrix elements in
order to diagonalize the overlap function. As shown in appendix A, the desired transformation
is

φn(x, t) → ψn(x, t) =
∫ 1

−1
dy v(y)Ln+1(y)g2(x, t |y, 0), n = 0, 1, . . . , N − 1, (144)

where

g2(x, t |y, 0) =
∞∑

n=0

e−εntφn(x)φn(x) (145)

is Green’s function satisfying(
∂

∂t
− H

)
g2(x, t |x ′, t ′) = 0; g2(x, t |y, t) = δ(x − y)

v(x)
. (146)

By definition ψi−1(x
′
j , 0) = δij and the matrix in the denominator is mapped into the identity.

By construction, the new set of functions {ψn} and {χn} satisfy the biorthogonality condition∫ ∞

1
dx w(x)ψn(x, t)χm(x, t) = δn,m, (147)

therefore we can write the solution in the determinantal form

P({x}, t |{x ′}, 0) = 1

N !
det[K(xi, xj ; t)]i,j=1,...,N , (148)

with the kernel given by

K(x, y; t) = w(x)

N−1∑
n=0

ψn(x, t)χn(y, t). (149)
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Using the definitions of the functions χn(x, t) and ψn(x, t) and following the same steps as in
section 4 we arrive at the DMPK version of (55) for the kernel

K(x, y; t) = w(x)

∫ 1

−1
dξ v(ξ)

∮
dz

2π i

1 − �(ξ, z)

(z − ξ)
g1(y, t |z, 0)g2(x, t |ξ, 0). (150)

This equation is valid for arbitrary delta-function initial conditions. For degenerate (ballistic)
initial conditions, x ′

n = 1, the integrals factorize and we can write

K(x, y; t) = w(x)

N−1∑
l=0

Il(x, t)Jl(y, t), (151)

where

Il(x, t) =
∞∑

n=0

e−εn t

hn

alnP
(ν,ν)
n (x), (152)

and

Jl(y, t) =
∫ ∞

0
dkA2

k e−εk t bl(k)F (α)
k (y). (153)

The coefficients are given by

aln =
∫ 1

−1
dx(1 − x2)ν(x − 1)lP (ν,ν)

n (x)

= (−1)n+l2l+αl!�(l + α/2 + 1/2)�(n + α/2 + 1/2)

(l − n)!n!�(n + l + α + 1)
θ(l − n) (154)

and

bl(k) =
∮

dz

2π i

Fk(z)

(z − 1)l+1
= (−1)l|�(α/2 + ik + l)|2�(α/2 + 1/2)

2l l!|�(α/2 + ik)|2�(l + α/2 + 1/2)
. (155)

Using these coefficients explicitly in (151) we find

K(x, y; t) = w(x)

N−1∑
l=0

∞∑
n=0

∫ ∞

0
dkA2

kF
(α)
k (z) e−εnk tP (ν,ν)

n (x)
(−1)n(2n + α)�(n + α)

�(n + α/2 + 1/2)

× �(α/2 + 1/2)|�(α/2 + ik + l)|2
�(n + l + α + 1)|�(α/2 + ik)|2(l − n)!

θ(l − n), (156)

in which we defined

εnk = εn + εk = n(n + α) + k2 + α2/4. (157)

The Heaviside function implies the constraint n � l. Thus we can handle the summations
according to the rule

N−1∑
l=0

∞∑
n=0

Alnθ(l − n) →
N−1∑
n=0

N−1∑
l=n

Aln. (158)

Furthermore, the summation over l can be performed explicitly by
N−1∑
l=n

|�(α/2 + ik + l)|2
(l − n)!�(n + l + α + 1)

= C(α)(N, n, k)

εnk

, (159)

where we defined

C(α)(N, n, k) = |�(N + α/2 + ik)|2
(N − n − 1)!�(N + n + α)

. (160)
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Therefore, we write the kernel as

K(x, y; t) = 21−α(x2 − 1)(α−1)/2

�(α/2 + 1/2)

N−1∑
n=0

(−1)n
(2n + α)�(n + α)

�(n + α/2 + 1/2)
P (ν,ν)

n (x)

×
∫ ∞

0

dk

π

k sinh(kπ)

εkn

C(α)(N, n, k) e−εkntF (α)
k (y) (161)

which agrees with equation (3) of [35], where it was used to calculate the first three moments
of the conductance. In particular, for α = 1, the hypergeometric function can be written in
terms of the conical function

F (1)
k (y) = 2F1(1/2 + ik, 1/2 − ik; 1; (1 − y)/2) = P−1/2+ik(y), (162)

and the kernel (161) reduces to the solution of the Wigner–Dyson class first obtained by
Frahm [3]:

K(x, y; t) =
N−1∑
n=0

(−1)n(2n + 1)Pn(x)

∫ ∞

0

dk

π

k sinh(kπ)

εkn

C(1)(N, n, k) e−εkntP−1/2+ik(y).

(163)

This result was also derived in [11] using the method of integral transform.

8. Conclusions

We studied the n-point correlation function of Brownian-motion ensembles describing
determinantal processes. Despite the complicated hierarchic relations satisfied by non-
equilibrium correlation functions, we show that for delta-function initial conditions they
have a factorized structure, similar to that found for equilibrium ensembles, where the n-point
function can be written in terms of a two-point function, known as kernel. This factorization
was obtained by solving the Fokker–Planck equation for the transition probability and using
a generalization of the biorthogonal function method. Our method differs from that used in
previous works by the systematic elimination of the Lagrange interpolation polynomial, which
allows for an elegant integral representation of the kernel, exhibiting in a very transparent way
its dependence on the one-particle Green’s function, thus showing a hidden mathematical
structure. Another advantage of our construction is the simplicity of the implementation of
degenerate initial conditions, contrasting with the subtle method used for instance in [3]. As
applications we obtained exact solutions for the Hermite, Laguerre and Jacobi Brownian-
motion ensembles with the degenerate initial condition. Our results for Hermite and Laguerre
agree with the results obtained from Baker–Forrester’s representation, presented in [29], which
was obtained by using Jack polynomial methods. We also adapted our method to be used
for transfer matrix ensembles. In particular, we calculated the correlation functions for the
BdG ensembles with time reversal symmetry. In this case the homogeneous initial conditions
for the transmission eigenvalues allow us to write the kernel in terms of two uncoupled
integrals.
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Appendix A. Baker–Forrester’s representation

From our discussion in section 2.1 it is clear that one way to solve the Fokker–Planck
equation (23) is to construct the spectral decomposition of Green’s function of the Calogero–
Sutherland Hamiltonian (20). This problem was solved by Baker–Forrester [29], by writing
the eigenfunctions in terms of multivariate generalizations of the classical polynomials. In
this section we outline Baker–Forrester’s solution in our notation for future reference.

The ground state wavefunction of (20) is �0 = J
1/2
β with eigenvalue −E0. The excited

states are obtained by multiplying a symmetric function to the ground state wavefunction,
� = �0�. In this way, � and �0 have the same behavior under exchange of particles. The
action of the Hamiltonian operator (20) on the wavefunction � is given by

H� = −E0� − �0L†
FP�, (A.1)

where the adjoint Fokker–Planck operator reads [11]

L†
FP = −J

−1/2
β (H + E0)J

1/2
β =

N∑
i=1

⎛
⎝s(xi)

∂2

∂x2
i

+ r(xi)
∂

∂xi

+ β
∑
j (�=i)

S(Xi)

xi − xj

∂

∂xi

⎞
⎠ . (A.2)

The excited state wavefunction � is an eigenfunction of H, with energy ε, if the symmetric
function � satisfies the eigenvalue equation

L†
FP� = −E�. (A.3)

The eigenvalues of H and L†
FP are related by a simple translation ε = E −E0. The eigenvalue

equation (A.3) coincides with usual definition of the multivariate orthogonal polynomials
[29, 37–39], which form a complete set of eigenfunction normalized as∫

dxNJβ({x})wN({x})�λ({x})�λ′({x}) = δλ,λ′ . (A.4)

The quantum numbers are partitions λ = (λ1, . . . , λN) represented by Young diagrams. The
parts λj ’s of a partition λ are ordered as λ1 � λ2 � · · · λN . The degree of a partition λ is
defined by |λ| = ∑

j λj . With the knowledge of the eigenfunctions and eigenvalues of the
Hamiltonian H we can write the spectral decomposition of Green’s function

G({x}, t |{x ′}, t ′) =
∑

λ

e−ελ(t−t ′)�λ({x})�λ({x ′})

= eE0t J
1/2
β ({x})J 1/2

β ({x ′})
∑

λ

e−Eλ(t−t ′)�λ({x})�λ({x ′}).

(A.5)

The transition probability is obtained from Green’s function (A.5) through the relation (28),2

yielding

P({x}, t |{x ′}, t ′) = Jβ({x})wN({x})
∑

λ

e−Eλ(t−t ′)�λ({x})�λ({x ′}). (A.6)

Baker and Forrester analyzed in detail the Hermite and Laguerre ensembles. Here we translate
their explicit solution to our notation. Further details can be found in the original paper.

2 Since we are not specifying the statistics of the particles, the sign function appearing in (28) is not necessary.
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A.1. Hermite ensemble

From table 1 the Hermite ensemble is characterized by w(x) = e−x2
, s(x) = 1 and

r(x) = −2x. It is useful to introduce the notation wN({x}) = e− Tr X2
, where X =

diag(x1, x2, . . . , xN). The polynomial part of the eigenfunctions are the normalized Hermite
multivariate polynomials

�λ({x}) = 1√
h

(2/β)

λ

Hλ(X, 2/β), (A.7)

where

h
(2/β)

λ = 2|λ||λ|!
CNC

(2/β)

λ (1N)
; C−1

N = πN/2

2βN(N−1)/4

N∏
j=1

�(1 + βj/2)

�(1 + β/2)
. (A.8)

The generalized Hermite polynomials, also known in the literature as Hi-Jack polynomials,
can be defined by the action of an exponential operator on the Jack polynomials

Hλ(X, 2/β) = 2|λ|

C
(2/β)

λ (1N)
exp

⎛
⎝−1

4

∑
i

∂2

∂x2
i

− β

4

∑
i �=i

1

xi − xj

∂

∂xi

⎞
⎠C

(2/β)

λ (X). (A.9)

The transition probability is obtained by substituting (A.7) into (A.6). Using a summation
identity [29], it can be written in closed form

P({x}, t |{x0}, 0) = CN

(1 − e−4t )Nq/2
Jβ({x}) exp

(
−Tr X2 + e−4t Tr X0

2

1 − e−4t

)

× 0F (2/β)

0

(
2 e−2tX√
1 − e−4t

,
X0√

1 − e−4t

)
, (A.10)

where q = 1 + β(N − 1)/2 and

0F (α)
0 (X, Y ) =

∑
λ

1

|λ|!
C

(α)
λ (X)C

(α)
λ (Y )

C
(α)
λ (1N)

(A.11)

is the generalized hypergeometric function. The solution (A.10) is general and valid for all
β values. This shows the power of Jack polynomials technique in contrast with the more
restrictive group theory methods which can be applied only to β = 1, 2 and 4. Despite
its importance, it is not obvious how to construct the n-point correlation functions (1) from
this representation. For the degenerate initial condition, X0 = diag(x0, x0, . . . , x0), however,
equation (A.10) can be written in terms of elementary functions

P({x}, t |{x0}, 0) = CNJβ({x})
(1 − e−4t )Nq/2

exp

(
− 1

(1 − e−4t )

N∑
i=1

(xi − e−2t x0)
2

)
, (A.12)

which allows the calculation of the correlation functions. For example, in the unitary class we
have β = 2, q = N , and we can write (A.12) in the familiar form

P({x}, t |{x0}, 0) = AN(t)�2
N(X)wN(X, t), (A.13)

where we defined AN(t) = CN [α1(t)]−N2
, wN(X, t) =∏i w(xi, t), and the weight function

w(x, t) = exp

(
− (x − α0(t)x0)

2

α2
1(t)

)
, (A.14)
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with α0(t) = e−2t and α1(t) = √
1 − e−4t . The orthonormal polynomials with respect to the

weight w(x, t) are time-dependent Hermite polynomials

pn(x, t) =
⎛
⎝ 1

2nn!
√

πα2
1(t)

⎞
⎠

1/2

Hn

(
x − α0(t)x0

α1(t)

)
. (A.15)

Applying the usual orthogonal polynomials method [19], we can write (A.13) as a
determinantal process

P({x}, t |{x0}, 0) = 1

N !
det[K(xi, xj ; t)]i,j=1,...,N , (A.16)

with the kernel function

K(x, y; t) = e−(x−α0(t)x0)
2/α2

1 (t)√
πα2

1(t)

N−1∑
n=0

1

2nn!
Hn

(
x − α0(t)x0

α1(t)

)
Hn

(
y − α0(t)x0

α1(t)

)
. (A.17)

According to a theorem of RMT [19], which explores the orthogonality of the functions
pn(x, t), it is possible to write the correlation function in a similar factorized form

ρn(x1, . . . , xn, t) = det[K(xi, xj ; t)]i,j=1,...,n. (A.18)

The orthogonal and symplectic ensembles with the degenerate initial condition can be treated
similarly by means of an anti-orthogonal polynomials method [19]. The correlation functions
can also be calculated using well-known theorems of RMT.

A.2. Laguerre ensemble

From table 1 the Laguerre ensemble is characterized by w(x) = xνe−x, s(x) = x and
r(x) = 1 + ν − x. It is useful to introduce the notation wN({x}) = e− Tr X

∏
i x

ν
i , where

X = diag(x1, x2, . . . , xN). The polynomial part of the eigenfunctions is the normalized
Laguerre multivariate polynomials

�λ({x}) = 1√
h

(α)
λ

Lν
λ(X, 2/β), (A.19)

where

h
(2/β)

λ = [ν + q](2/β)

λ

CNC
(2/β)

λ (1N)|λ|!
; CN =

N−1∏
j=0

�(1 + β/2)

�
(
1 + (j + 1)β/2

)
�(1 + ν + βj/2)

, (A.20)

with [a](α)
λ =∏N

j=1

(
a − 1

α
(j − 1)

)
λj

been a generalization of the Pochhammer symbol. The
multivariate Laguerre polynomials are defined by Lassale’s formula

Lν
λ(X, 2/β) = (−1)|λ|

|λ|!C(2/β)

λ (1N)

× exp

⎛
⎝−

∑
i

(
xi

∂2

∂x2
i

+ (1 + ν)
∂

∂xi

)
− β

∑
i �=j

xi

xi − xj

∂

∂xi

⎞
⎠C

(2/β)

λ (X).

(A.21)
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The transition probability is obtained by substituting (A.7) into (A.6). Using a summation
identity [29], it can be written in closed form

P({x}, t |{x0}, 0) = Pst (X)

(1 − e−t )N(ν+q)
exp

(
− e−t

1 − e−t
(Tr X + Tr X0)

)

× 0F (2/β)

1

(
ν + q,

X0

1 − e−t
,

e−tX

1 − e−t

)
, (A.22)

where Pst (X) is the stationary solution (11), q = 1 + β(N − 1)/2 and

0F (α)
1 (a;X;Y ) =

∑
λ

1

|λ|![a](α)
λ

C
(α)
λ (X)C

(α)
λ (Y )

C
(α)
λ (1N)

(A.23)

is the generalized hypergeometric function. As in the previous example, the problem of
finding the n-point correlation functions for general β and an arbitrary initial condition is
still open. This job can be done in the particular case of the degenerate initial condition
X0 = diag(0, 0, . . . , 0), where (A.22) can be written in terms of elementary functions

P({x}, t |{0}, 0) = Pst (X)

(1 − e−t )N(ν+q)
exp

(
− e−t

1 − e−t
Tr X

)
. (A.24)

To make contact with the classical Laguerre ensemble we rewrite (A.24) explicitly as

P({x}, t |{0}, 0) = CNαN(t)
∏
i<j

|α(t)xi − α(t)xj |β
N∏

i=1

(α(t)xi)
ν e−α(t)xi , (A.25)

where α(t) = (1 − e−t )−1. The correlation function follows immediately from the
methods developed for stationary ensembles [19]. In particular, for β = 2 the orthogonal
polynomials method yields the n-point correlation function, with the determinantal structure of
equation (A.18), with kernel given by

K(x, y; t) = α(t)(α(t)x)ν e−α(t)x

N−1∑
n=0

n!

�(n + ν + 1)
Lν

n(α(t)x)Lν
n(α(t)y), (A.26)

where Lν
n(x) is the classical Laguerre polynomial.

To conclude, we emphasize that despite (A.10) and (A.22) represent a solution to the
Fokker–Planck equation for general β, they do not yield direct access to the n-point correlation
function. In the particular case of the degenerate initial condition the correlation functions can
be calculated with an adaptation of the methods of equilibrium ensembles.

Appendix B. Biorthogonal system for polynomial ensembles

We start with the differential equation(
∂

∂t
− Hx

)
χ(x, t) = 0. (B.1)

The operator Hx is defined in (29) and has a complete set of integrable eigenfunctions in [a, b]
with weight w(x). The general solution of (B.1) is given by

χ(x, t) =
∫ b

a

dy w(y)g(x, t |y, 0)χ(y, 0), (B.2)

where g(x, t |y, t ′) is the one-particle Green’s function with spectral decomposition (33). Now
consider the equation obtained from (B.1) by changing t → −t(

∂

∂t
+ Hx

)
ψ(x, t) = 0, (B.3)
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which correspond to a time reversal operation. The corresponding Green’s function g̃, is
related to Green’s function g through g̃(x, t |x ′, t ′) = g(x ′, t ′|x, t). By imposing the initial
conditions

χm(x, 0) = δ(x − x ′
m+1)

w(x)
, m = 0, 1, . . . , N − 1 (B.4)

ψn(x, 0) = fn(x), n = 0, 1, . . . , N − 1, (B.5)

we find the following solutions

χm(x, t) = g(x, t |x ′
m+1, 0), (B.6)

ψn(x, t) =
∫ b

a

dy w(y)g(y, 0|x, t)fn(y, 0). (B.7)

We define the overlap matrix

Fn,m(t) =
∫ b

a

dx w(x)ψn(x, t)χm(x, t). (B.8)

Using the definitions of ψn(x, t) and χm(x, t) we find

Fn,m(t) =
∫ b

a

dy w(y)fn(y)

∫ b

a

dx w(x)g(y, 0|x, t)g(x, t |x ′
m+1, 0). (B.9)

The integral in x shows a composition of Green’s function from t = 0 to an arbitrary time t
and goes back to t = 0. Using the composition rule∫ b

a

dx w(x)g(y, 0|x, t)g(x, t |x ′
m+1, 0) = g(y, 0|x ′

m+1, 0) = δ(y − x ′
m+1)

w(y)
, (B.10)

we see that the overlap matrix is time independent and depends only on the choice of the initial
condition f (x)

Fn,m(t) = Fn,m = fn(x
′
m+1). (B.11)

Choosing fn(x) to be the Lagrange interpolation polynomial

fn(x) = Ln+1(x) =
N−1∏

l=0
l �=n

x − x ′
l+1

x ′
n+1 − x ′

l+1

, n = 0, . . . , N − 1, (B.12)

we diagonalize the overlap matrix

Fn,m = δn,m. (B.13)

Therefore, the set of functions ψn(x, t) e χm(x, t) form a biorthogonal system.∫ b

a

dx w(x)ψn(x, t)χm(x, t) = δn,m. (B.14)

Appendix C. Biorthogonal system for transfer matrix ensembles

The central idea is to perform a linear combination of the matrix elements

φn(x, t) → ψn(x, t) =
∞∑
l=0

αlnφl(x, t), (C.1)

27



J. Phys. A: Math. Theor. 41 (2008) 015004 A F Macedo-Junior and A M S Macêdo

and look for the appropriate coefficients in order to diagonalize the new overlap matrix∫ ∞

1
dx w(x)ψn(x, t)χm(x, t) = δn,m. (C.2)

Applying the transformation (C.1) into (C.2) and using (141) we find
N−1∑
l=0

αlnφl(x
′
m+1) = δn,m. (C.3)

By definition the Lagrange polynomial

Ln+1(x) =
N−1∏

l=0
l �=n

x − x ′
l+1

x ′
n+1 − x ′

l+1

, n = 0, . . . , N − 1, (C.4)

interpolates the function φk(x) at points x ′
m+1, and we obtain

φk(x) =
N−1∑
m=0

φk(x
′
m+1)Lm+1(x). (C.5)

Therefore, from (C.3) and (C.5) we can write

Ln+1(x) =
N−1∑
l=0

αlnφl(x). (C.6)

The coefficients αln can be found by using the orthogonality condition of the Jacobi
polynomials φl(x), yielding

αnm =
∫ 1

−1
dx v(x)φn(x)Lm+1(x). (C.7)

Thus the transformation that diagonalizes the overlap function is

φn(x, t) → ψn(x, t) =
∫ 1

−1
dy v(y)Ln+1(y)

N−1∑
l=0

φl(y)φl(x, t). (C.8)

This equation can be put in a more compact form by introducing Green’s function defined by
the equation (

∂

∂t
− H

)
g2(x, t |x ′, t ′) = 0; g2(x, t |y, t) = δ(x − y)

v(x)
. (C.9)

Since the eigenfunctions of H are Jacobi polynomials, Green’s function has the following
discrete spectral decomposition

g2(x, t |y, t ′) =
∞∑

n=0

e−εn(t−t ′)φn(x)φn(y). (C.10)

As Ln+1 is a polynomial of degree N − 1, we can use the orthogonality condition∫ 1

−1
dy v(y)Ln+1(y)φl(y) = 0, l > N − 1, (C.11)

to extend the upper limit of the sum in (C.8) to infinity, which by definition gives Green’s
function. Therefore, we write the transformation in the following compact form

ψn(x, t) =
∫ 1

−1
dy v(y)Ln+1(y)g2(x, t |y, 0). (C.12)
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[2] Macêdo A M S 1996 Phys. Rev. B 53 8411
[3] Frahm K and Pichard J L 1995 J. Phys. I France 5 877
[4] Beenakker C W and Rajaei B 1994 Rev. Rev. B 49 7499
[5] Mudry C, Brouwer P W and Furusaki A 1999 Phys. Rev. B 59 13221
[6] Brouwer P W, Furusaki A, Gruzberg I A and Mudry C 2000 Phys. Rev. Lett. 85 1064
[7] Nagao T and Forrester P J 1998 Nucl. Phys. B 530 742
[8] Katori M and Tanemura H 2004 J. Math. Phys. 45 3058
[9] Katori M, Tanemura H, Nagao T and Komatsuda N 2003 Phys. Rev. E 68 021112

[10] Bru M F 1989 J. Theor. Probab. 3 725
[11] Macedo-Junior A F and Macêdo A M S 2006 Nucl. Phys. B 752 439
[12] Caselle M and Magnea U 2004 Phys. Rep. 394 41
[13] Zirnbauer M R 1996 J. Math. Phys. 37 4986
[14] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[15] Serban D, Lesage F and Pasquier V 1996 Nucl. Phys. B 466 499
[16] Dumitriu I and Edelman A 2002 J. Math. Phys. 43 5830
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